Bayesian inference for the mixed conditional heteroskedasticity model
نویسندگان
چکیده
منابع مشابه
Mixed Normal Conditional Heteroskedasticity
Both unconditional mixed-normal distributions and GARCH models with fat-tailed conditional distributions have been employed for modeling financial return data. We consider a mixed-normal distribution coupled with a GARCH-type structure which allows for conditional variance in each of the components as well as dynamic feedback between the components. Special cases and relationships with previous...
متن کاملMultivariate mixed normal conditional heteroskedasticity
This paper proposes a new multivariate volatility model where the conditional distribution of a vector time series is given by a mixture of multivariate normal distributions. Each of these distributions is allowed to have a time-varying covariance matrix. The process can be globally covariance-stationary even though some components are not covariance-stationary. Some theoretical properties of t...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملInference in VARs with Conditional Heteroskedasticity of Unknown Form
We derive a framework for asymptotically valid inference in stable vector autoregressive (VAR) models with conditional heteroskedasticity of unknown form. We prove a joint central limit theorem for the VAR slope parameter and innovation covariance parameter estimators and address bootstrap inference as well. Our results are important for correct inference on VAR statistics that depend both on t...
متن کاملGeneralized Autoregressive Conditional Heteroskedasticity
A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in Engle (1982) to allow for past conditional variances in the current conditional variance equation is proposed. Stationarity conditions and autocorrelation structure for this new class of parametric models are derived. Maximum likelihood estimation and testing are also considered. Finally an e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Econometrics Journal
سال: 2007
ISSN: 1368-4221,1368-423X
DOI: 10.1111/j.1368-423x.2007.00213.x